1. Getaran

Pengantar

Dalam kehidupan sehari-hari terdapat banyak benda yang bergetar. Senar gitar yang sering anda main atau dimainkan oleh gitaris group band musik terkenal yang kadang membuat anda menjerit histeris bahkan sampai menangis tersedu-sedu, getaran garpu tala, getaran mobil ketika mesinnya dinyalakan atau ketika mobil mencium mobil lainnya hingga penumpangnya babak belur. Ingat juga ketika anda tertawa terpingkal-pingkal tubuh anda juga bergetar, demikian juga rumah anda yang bergetar dasyat hingga ambruk ketika terjadi gempa bumi. Sangat banyak contoh getaran dalam kehidupan kita, sehingga jika disebutkan satu persatu maka tentu sangat melelahkan. Silahkan dipikirkan sendiri contoh lainnya.

Getaran dan gelombang merupakan dua hal yang saling berkaitan. Gelombang, baik itu gelombang air laut, gelombang gempa bumi, gelombang suara yang merambat di udara; semuanya bersumber pada getaran. Dengan kata lain, getaran adalah penyebab adanya gelombang. Mengenai gelombang, selengkapnya akan kita pelajari pada pokok bahasan tersendiri.

GERAK HARMONIK

Getaran harmonis (sederhana) atau gerak harmonik (sederhana) adalah getaran yang dipengaruhi oleh gaya pemulih yang arahnya menuju ke titik keseimbangan dan besarnya sebanding dengan simpangan.

Gerak suatu benda yang termasuk gerak harmonik antara lain :

  1. Putaran roda motor atau mobil dengan kecepatan tetap.
  2. Gerakan piston dalam silinder motor.
  3. Getaran pegas.
  4. Ayunan sederhana.
  5. Gerakan ujung jarum mesin jahit.
  6. Putaran poros engkol.

Setiap gerak yang terjadi secara berulang dalam selang waktu yang sama disebut gerak periodik. Karena gerak ini terjadi secara teratur maka disebut juga sebagai gerak harmonik/harmonis. Apabila suatu partikel melakukan gerak periodik pada lintasan yang sama maka geraknya disebut gerak osilasi/getaran. Bentuk yang sederhana dari gerak periodik adalah benda yang berosilasi pada ujung pegas. Karenanya kita menyebutnya gerak harmonis sederhana. Banyak jenis gerak lain (osilasi dawai, roda keseimbangan arloji, atom dalam molekul, dan sebagainya) yang mirip dengan jenis gerakan ini, sehingga pada kesempatan ini kita akan membahasnya secara mendetail.

GERAK HARMONIS SEDERHANA

Gerak harmonis sederhana yang dapat dijumpai dalam kehidupan sehari-hari adalah getaran benda pada pegas dan getaran benda pada ayunan sederhana. Kita akan mempelajarinya satu persatu.

Besaran fisika pada Gerak Harmonik Sederhana

Periode (T)

Benda yang bergerak harmonis sederhana pada ayunan sederhana memiliki periode alias waktu yang dibutuhkan benda untuk melakukan satu getaran secara lengkap. Benda melakukan getaran secara lengkap apabila benda mulai bergerak dari titik di mana benda tersebut dilepaskan dan kembali lagi ke titik tersebut.

Pada contoh di atas, benda mulai bergerak dari titik A lalu ke titik B, titik C dan kembali lagi ke B dan A. Urutannya adalah A-B-C-B-A. Seandainya benda dilepaskan dari titik C maka urutan gerakannya adalah C-B-A-B-C.

Jadi periode ayunan (T) adalah waktu yang diperlukan benda untuk melakukan satu getaran (disebut satu getaran jika benda bergerak dari titik di mana benda tersebut mulai bergerak dan kembali lagi ke titik tersebut ). Satuan periode adalah sekon atau detik.

Frekuensi (f)

Selain periode, terdapat juga frekuensi alias banyaknya getaran yang dilakukan oleh benda selama satu detik. Yang dimaksudkan dengan getaran di sini adalah getaran lengkap. Satuan frekuensi adalah 1/sekon atau s-1. 1/sekon atau s-1 disebut juga hertz, menghargai seorang fisikawan.

Dari kedua penjelasan diatas maka akan diperoleh hubungan f dan T :

Amplitudo (f)

Pada ayunan sederhana, selain periode dan frekuensi, terdapat juga amplitudo. Amplitudo adalah perpindahan maksimum dari titik kesetimbangan. Pada contoh ayunan sederhana sesuai dengan gambar di atas, amplitudo getaran adalah jarak AB atau BC.

Pendulum Sederhana

Contoh gerak osilasi (getaran) yang populer adalah gerak osilasi pendulum (bandul). Pendulum sederhana terdiri dari seutas tali ringan dan sebuah bola kecil (bola pendulum) bermassa m yang digantungkan pada ujung tali, sebagaimana tampak pada gambar di bawah. Dalam menganalisis gerakan pendulum sederhana, gaya gesekan udara kita abaikan dan massa tali sangat kecil sehingga dapat diabaikan relatif terhadap bola.

Gambar di samping memperlihatkan pendulum sederhana yang terdiri dari tali dengan panjang L dan bola pendulum bermassa m. Gaya yang bekerja pada bola pendulum adalah gaya berat (w = mg) dan gaya tegangan tali FT. Gaya berat memiliki komponen mg cos teta yang searah tali dan mg sin teta yang tegak lurus tali. Pendulum berosilasi akibat adanya komponen gaya berat mg sin teta. Karena tidak ada gaya gesekan udara, maka pendulum melakukan osilasi sepanjang busur lingkaran dengan besar amplitudo tetap sama.

Hubungan antara panjang busur x dengan sudut teta dinyatakan dengan persamaan :

x = L θ

(ingat bahwa sudut teta adalah perbandingan antara jarak linear x dengan jari-jari lingkaran (r) jika dinyatakan dalam satuan radian. Karena lintasan pendulum berupa lingkaran maka kita menggunakan pendekatan ini untuk menentukan besar simpangannya. Jari-jari lingkaran pada kasus ini adalah panjang tali L)

Syarat sebuah benda melakukan Gerak Harmonik Sederhana adalah apabila gaya pemulih sebanding dengan simpangannya… Apabila gaya pemulih sebanding dengan simpangan x atau sudut teta maka pendulum melakukan Gerak Harmonik Sederhana.

Gaya pemulih yang bekerja pada pendulum adalah -mg sin teta. Secara matematis ditulis :

F = – mg sin θ

Tanda negatif menunjukkan bahwa gaya mempunyai arah yang berlawanan dengan simpangan sudut teta. Berdasarkan persamaan ini, tampak bahwa gaya pemulih sebanding dengan sin teta, bukan dengan teta. Karena gaya pemulih F berbanding lurus dengan sin teta bukan dengan teta, maka gerakan tersebut bukan merupakan Gerak Harmonik Sederhana. Alasannya jika sudut teta kecil, maka panjang busur x (x = L kali teta) hampir sama dengan panjang L sin teta
(garis putus-putus pada arah horisontal).

Dengan demikian untuk sudut yang kecil, lebih baik kita menggunakan pendekatan :

Sin θ ≈ θ

Sehingga persamaan gaya pemulih menjadi :

F = – mg Sin θ ≈ -mg θ

Karena :

x = Lθ à

maka persamaan diatas menjadi

Persamaan ini sama dengan hukum Hooke

F = -kx

Periode Pendulum Sederhana

Periode pendulum sederhana dapat kita tentukan menggunakan persamaan :

Konstanta gaya efektif k kita ganti dengan mg/L :

Frekuensi Pendulum Sederhana

Keterangan :

T adalah periode, f adalah frekuensi, L adalah panjang tali dan g adalah percepatan gravitasi.

Berdasarkan persamaan di atas, tampak bahwa periode dan frekuensi getaran pendulum sederhana bergantung pada panjang tali dan percepatan gravitasi. Karena percepatan gravitasi bernilai tetap, maka periode sepenuhnya hanya bergantung pada panjang tali (L). Dengan kata lain, periode dan frekuensi pendulum tidak bergantung pada massa beban alias bola pendulum. Anda dapat dapat membuktikannya dengan mendorong seorang yang gendut di atas ayunan. Bandingkan dengan seorang anak kecil yang didorong pada ayunan yang sama.

Gerak Harmonis Sederhana pada Pegas

Semua pegas memiliki panjang alami sebagaimana tampak pada gambar a. Ketika sebuah benda dihubungkan ke ujung sebuah pegas, maka pegas akan meregang (bertambah panjang) sejauh y. Pegas akan mencapai titik kesetimbangan jika tidak diberikan gaya luar (ditarik atau digoyang), sebagaimana tampak pada gambar B. Jika beban ditarik ke bawah sejauh y1 dan dilepaskan (gambar c), benda akan akan bergerak ke B, ke D lalu kembali ke B dan C. Gerakannya terjadi secara berulang dan periodik. Sekarang mari kita tinjau hubungan antara gaya dan simpangan yang dialami pegas.

Bagaimana osilasi/getaran pada pegas yang digantungkan secara vertikal ?

Pada dasarnya osilasi alias getaran dari pegas yang digantungkan secara vertikal sama dengan getaran pegas yang diletakan horisontal. Bedanya, pegas yang digantungkan secara vertikal lebih panjang karena pengaruh gravitasi yang bekerja pada benda (gravitasi hanya bekerja pada arah vertikal, tidak pada arah horisontal). Mari kita tinjau lebih jauh getaran pada pegas yang digantungkan secara vertikal…

Pada pegas yang kita letakan horisontal (mendatar), posisi benda disesuaikan dengan panjang pegas alami. Pegas akan meregang atau mengerut jika diberikan gaya luar (ditarik atau ditekan). Nah, pada pegas yang digantungkan vertikal, gravitasi bekerja pada benda bermassa yang dikaitkan pada ujung pegas. Akibatnya, walaupun tidak ditarik ke bawah, pegas dengan sendirinya meregang sejauh x0. Pada keadaan ini benda yang digantungkan pada pegas berada pada posisi setimbang.

Berdasarkan hukum II Newton, benda berada dalam keadaan setimbang jika gaya total = 0. Gaya yang bekerja pada benda yang digantung adalah gaya pegas (F0 = -kx0) yang arahnya ke atas dan gaya berat (w = mg) yang arahnya ke bawah. Total kedua gaya ini sama dengan nol. Mari kita analisis secara matematis…

ΣF = mg – kxo= 0 à Fo = mg

Kita tetap menggunakan lambang x agar anda bisa membandingkan dengan pegas yang diletakan horisontal. Dirimu dapat menggantikan x dengan y. Resultan gaya yang bekerja pada titik kesetimbangan = 0. Hal ini berarti benda diam alias tidak bergerak.

Jika kita meregangkan pegas (menarik pegas ke bawah) sejauh x, maka pada keadaan ini bekerja gaya pegas yang nilainya lebih besar dari pada gaya berat, sehingga benda tidak lagi berada pada keadaan setimbang (perhatikan gambar di bawah).

Total kedua gaya ini tidak sama dengan nol karena terdapat pertambahan jarak sejauh x; sehingga gaya pegas bernilai lebih besar dari gaya berat. Karena terdapat gaya pegas (gaya pemulih) yang berarah ke atas maka benda akan bergerak ke atas menuju titik setimbang. (sambil lihat gambar di yang kanan).

Pada titik setimbang, besar gaya total = 0, tetapi laju gerak benda bernilai maksimum (v maks), sehingga benda bergerak terus ke atas sejauh -x. Laju gerak benda perlahan-lahan menurun, sedangkan besar gaya pemulih meningkat dan mencapai nilai maksimum pada jarak -x. Setelah mencapai jarak -x, gaya pemulih pegas menggerakan benda kembali lagi ke posisi setimbang (lihat gambar di bawah). Demikian seterusnya. Benda akan bergerak ke bawah dan ke atas secara periodik. Dalam kenyataannya, pada suatu saat tertentu pegas tersebut berhenti bergerak karena adanya gaya gesekan udara.

Semua benda yang bergetar di mana gaya pemulih F berbanding lurus dengan negatif simpangan (F = -kx), maka benda tersebut dikatakan melakukan gerak harmonik sederhana (GHS) alias Osilator Harmonik Sederhana (OHS).

Sudut fase

j = 2p
F = 2p (t/T) = (2p/T) t = w
t

F = beda fase = (t/T)

w = kecepatan sudut (rad/s)

sehingga persamaan simpangan memiliki bentuk lain, yaitu :

Y = A sin 2p
F

Y = A sin w
t

Contoh :

  1. Sebuah titik bergerak harmonikdengan amplitudo 5 cm dan periode 15 detik. Setelah 3 detik, tentukan :
    1. Sudut fase
    2. Fase getaran
    3. Simpangan

. Penyelesaian :

A = 5 cm, T = 15 s, t = 3 s

  1. j = 2p (t/T) = 2p (3/15) = 0,4p
  2. F = t/T = 3/15 = 0,2
  3. Y = A sin j = 5 sin 0,4p = 5 x 0,95

= 4,75 cm

  1. Berapa fase getaran jika simpangannya A½Ö2 ?

. Penyelesaian :

A½Ö2 = A sin 2p
F

sin (p/4) = sin 2p
F

F = (p/4) x (1/2p) = 1/8

Kecepatan dan Percepatan Gerak Harmonis

Kecepatan linier dari gerak harmonis dinyatakan dengan

vy
= wA cos wt

Sedangkan percepatan liniernya dinyatakan dengan

ay
= – w2A sin wt = – w2Y

tanda negatif berarti arahnya berlawanan dengan simpangan gerak harmonis

Superposisi Getaran

a. Dua getaran segaris dan memiliki amplitudo sama

Getaran I memiliki simpangan :

Y1 = A1 sin w1t

Getaran II memiliki simpangan :

Y2 = A2 sin (w2t + j)

Hasil perpaduan dua getaran merupakan getaran III yang memiliki simpangan :

Y3 = Y1 + Y2

b. Dua getaran yang arahnya saling tegak lurus

Hasil perpaduan dua getaran berupa suatu pola yang disebut pola Lissajous.

Energi Gerak Harmonis

Energi yang dimiliki oleh benda yang bergetar harmonis terdiri dari :

a. Energi kinetik

Ek
= ½ m w2A2 cos2 wt

b. Energi potensial

Ep = ½ m
w2A2 sin2 wt

c. Energi total/mekanik

E = ½ m
w2A2

= ½ m(4p2/T2)A2

= ½ m4p2f2A2

karena m
w2 = k, maka

E = ½ kA2

yang berarti energi mekanik getaran berbanding lurus dengan kuadrat amplitudo dan frekuensinya, serta berbanding terbalik dengan kuadrat periodenya.

2 thoughts on “1. Getaran

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s